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Smart-Meter Phase Clustering in Low-Voltage Distribution Networks​

Introduction​

Low-voltage (LV) networks often lack accurate phase 

documentation, which is critical for load balancing and 
planning. This work proposes a scalable, data-driven method 
to identify phase connectivity using smart meter voltage data 
- no on-site inspection required.
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Dataset

Source: �

� 45 days of data�
� Split into three two-weeks long datasets.�

� 15-minute voltage time series from smart meters (SMs)​



Scope: Two LV transformers (TXs)�
� Transformer A: 89 single-phase SMs�
� Transformer B: 109 single-phase SMs​



Features:�
� Real-world operational data�
� No labeled phase info (unsupervised setting)�
� Includes voltage variability and noise
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Figure 1. Distribution of the real phases of the SM for all datasets.​
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Figure 2. Distribution of missing values for Transformer A and Transformer B for the three batches.
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Figure 3. Methodology flowchart.

Result�
� Using spectral clustering based on k-nearest neighbour 

graph, the method:�
� Demonstrated robustness to noise and voltage 

variability.�
� Enabled automated mapping of phase connectivity.�
� Accurate phase identification across both transformers.�
� The lowest accuracy obtained for Batch 2 indicates that 

temporal variations in voltage time-series were not 
specific enough.​
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Figure 4. Heatmap depicting the binary similarity 
matrix obtained for transformer A, for Batch 0.

B 0.51 0.37 0.35

Dunn Index A 0.44 0.44 0.61

B 0.58 0.53 0.41

Silhouette Score A 0.68 0.65 0.67

B 1.00 0.97 0.45

Accuracy A 0.97 1.00 1.00

Metric TX Batch 0 Batch 1 Batch 2

Table 1. Performance metrics for the best models 
across the different transformers and batches.​

Conclusions

This method enables DSOs to:�

� Improve load balancing�
� Reduce manual verification�
� Enhance observability using existing infrastructure​
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