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Abstract 

Low-voltage (LV) distribution networks have evolved over decades with limited prioritization of detailed documentation and 

digitization. Unlike high-voltage (HV) networks, which are well-mapped and monitored, LV networks often lack critical data, 

such as labelled feeders and phase identification in GIS systems. This data gap combined with the growing integration of 

distributed energy resources (DER) and the adoption of time-of-use tariffs presents challenges for effective planning and 

operations. 

 

This paper introduces a method for phase identification based on voltage measurements from smart meters (SMs). The analysis 

utilizes a real-world dataset comprising 15-minute sampled voltage time series from 89 and 109 single-phase SMs connected to 

two transformers. The developed machine learning pipeline thoroughly addresses data pre-processing and applies spectral 

clustering and unsupervised clustering evaluation. The pipeline was designed to ensure robustness against distinct voltage 

profiles often observed for different transformers. 

 

By utilizing existing SM data, the proposed approach eliminates the need for costly on-site data collection. It enables distribution 
system operators to automatically map phase connectivity, delivering immediate benefits such as improved load balancing, loss 
reduction, and enhanced network planning. This method provides a scalable, cost-effective solution for addressing critical data 

gaps in LV distribution networks. 

1 Introduction 

The low-voltage (LV) distribution network faces increasing 
operational challenges due to the growing integration of 
distributed energy resources (DERs) and the adoption of new 
smart loads like electric vehicles and heat pumps [1, 2]. 
Efficient network management and planning requires 
distribution system operators (DSOs) to have accurate 
knowledge of their network topology, particularly regarding 
customer phase connectivity. Without accurate phase grid 
mapping, DSOs cannot effectively assess three-phase 
imbalances, compute line losses, or optimize network 
operations [3, 4]. 
However, in many LV distribution networks, the phase 
connectivity information is often missing, outdated or 
incorrect. This information gap typically arises from poor 
historical record-keeping, network reconfigurations during 
maintenance, and the lack of systematic documentation during 
initial customer connections [1, 3, 4]. While traditional 
methods for phase identification exist, such as manual field 
measurements or signal injection techniques, these approaches 
are time-intensive, costly, and impractical for large-scale 
deployment [2, 5]. 
The widespread deployment of smart meters (SMs) presents 
an opportunity to develop data-driven approaches for phase 
identification by collectively providing a considerable amount 
of voltage measurements, enabling methods that leverage 
patterns in this data to infer phase connections [5]. Most 

studies present voltage-based phase identification solutions 
that consist in assigning customer phase according to the 
highest similarity with each substation feeder phase 
(customer-to-feeder similarity). However, in the absence of 
substation feeder phase time series, there are methods 
exploring customer-to-customer voltage similarity [3, 4]. In 
this scenario, it is assumed that there are impedances and 
electric loads on the distribution system that, in turn, lead to 
unbalanced line currents and voltages. As result, observing 
high similarity among voltage time series in the same phase is 
expected [3, 4, 5]. Additionally, customers connected to 
different distribution transformers are expected to exhibit 
different voltage profiles [4]. 
Several approaches have been proposed for phase 
identification using voltage measurements. Interestingly, 
when comparing voltage with the alternative power 
measurement-based phase identification methods, results 
show that voltage methods lead to better performance [2]. 
Summarily, voltage-based costumer-to-customer methods that 
do not rely on available transformer/feeder time series [5, 6, 7, 
8, 9], use correlation [9, 8], k-nearest neighbour [7] similarity 
matrices to which spectral clustering [5, 6, 7, 9] or constrained 
k-means [6, 8] is applied. Reported constrained clustering 
relies on information from three-phase meters [8] or the 
customer-transformer labelling [6]. Some of these studies [5, 
7] are also conducted on synthetic datasets. Additionally, 
results are often reported considering the existence of ground 
truth for the phases corresponding to each costumer/SM. In 
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other words, the proposed methods are assessed using 
supervised (ground truth-based) metrics and lack the 
unsupervised assessment of the clustering solutions which are 
required when ground truth information is not available and 
different clustering methods are tested on the training data. 
Based on the above, several technical challenges need to be 
addressed in phase identification problem: 

1. Data quality: SM measurements may contain noise, 
missing values, or inconsistencies that need to be 
handled appropriately. 

2. Voltage profile variations: different transformers can 
exhibit distinct voltage profiles, requiring methods that 
are robust across diverse network conditions. 

3. Performance validation: the lack of ground truth data 
makes it challenging to evaluate clustering accuracy. 

4. Scenario flexibility: deriving a method robust to 
different acquisition scenarios. 
 

In this paper, we present a data-driven unsupervised method 
for phase grid mapping using SM voltage data. The method 
employs spectral clustering techniques which are particularly 
well-suited for capturing the inherent structure in voltage 
measurements while being robust to noise. Since voltage 
profiles can vary significantly between different transformers 
due to diverse network characteristics and loading conditions 
[10], our method uses transformer-customer labelling to 
provide transformer-specific phase identification. This way, 
spectral clustering model can capture the unique voltage 
patterns and relationships within each transformer's service 
area. As shown by Hoogsteyn et al. [2], voltage measurements 
from customers connected to the same transformer tend to 
exhibit similar temporal patterns that differ from those 
connected to other transformers.  
Furthermore, network reconfigurations and maintenance 
activities can occur periodically, suggesting the need for 
regular batch analysis to detect such changes and inform the 
DSO.  
 
The key contributions of this work include: 

1. A comprehensive pre-processing pipeline to handle 
missing values and prepare SM data for clustering 
analysis. 

2. A systematic evaluation of clustering parameters and 
model performance using unsupervised clustering 
evaluation metrics. 

3. Validation of the method's robustness across multiple 
distribution networks with distinct voltage 
characteristics. 

 
The remainder of this paper is organized as follows. Section 2 
describes the dataset and methodology, including data pre-
processing and the clustering approach. Section 3 presents and 
discusses the results. Finally, conclusions and future work are 
presented in Section 4. 
 

2 Methodology 

The following sections describe each step of the machine 
learning pipeline designed for this study (see Fig. 1). 

 

2.1 Smart meter data 
In this study, we used a dataset comprising 15-minute sampled 
voltage time series for 89 and 109 single-phase SMs connected 
to two transformers A, and B, respectively. These transformers 
are part of a real LV grid in Évora, Portugal, operated by DSO 
E-Redes [11]. The dataset contains phase labels for each SM 
obtained using a phase identification approach based on 
substation data [12]. The voltage time series include a period 
of 45 days spanning across the months of April and May. 
These data are then first grouped by transformer ID and then 
split by date to yield two-weeks long datasets. For each 
transformer, we are left with three two-weeks datasets: “Batch 
0” with data from April, and “Batch 1” and “Batch 2” with data 
from May. Each of these will be independently pre-processed 
and clustered afterwards. Analysis of two-week batches 
provides an optimal balance between data volume and 
processing efficiency while allowing detection of systematic 
changes in phase connectivity. 
Fig. 2 presents the distribution of the mapped SM phases per 
transformer. The distribution of phases for Transformer A 
indicates that the distribution is unbalanced, since 47% of the 
SM are in phase C. This unbalance can lead to bias during the 
phase identification method for this transformer, since one 
phase is more predominant than the others in the dataset [13, 
14]. For Transformer B, the SM are evenly distributed across 
all phases. 
 
2.2 Data pre-processing 
Since the data obtained by the SMs may contain outliers and/or 
missing values, we added a pre-processing step to ensure that 
quality and robustness of the data available was the best 
possible. The pre-processing starts with a filtering stage. At 
this stage, SMs with more than 70% of missing data and SMs 
with constant data are removed. In addition, the zero values in 
the voltage series are considered as missing values, since we 
could not guarantee that they were not outliers. Fig. 3 shows 
the distribution of missing data in the three batches.   
 

 
Fig. 1 Methodology flowchart depicting the machine learning 
pipeline developed for phase identification using voltage 
measurements. This methodology was applied independently for 
each transformer/batch data. 
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Fig. 2 Distribution of the real phases of the SM for all datasets. 

 
The voltage time series contain missing values resulting from 
either hardware issues or problems related to the infrastructure. 
The distribution of missing data indicates that most SM have 
a percentage of missing data below 10%. 
In the next stage of pre-processing, the dataset is scaled to 
ensure that the comparisons between the voltage time series 
are not affected by large variations in amplitude and offset [15, 
16]. We choose the Scikit-Learn Standard Scaler since we 
have previously filtered our datasets to ensure that the outlier 
voltage values that may have been present in data from a real 
LV grid were dealt with [16]. 
 
  
The last step of the pre-processing stage is the imputation of  
missing values. An essential property of a robust time series 
dataset is a low or non-existent percentage of missing values, 
i.e., a dataset with continuous data, since it helps to obtain 
more accurate models and predictions [17]. It is important to 
note that time series, contrary to other types of data, have 
temporal dependence [15]. Therefore, we used a multivariate 
imputation algorithm, the Scikit-Learn KNN Imputer method, 
to perform the imputation of missing values. 
Since no SM were removed during the pre-processing stage, 
the distribution of real phase of the SM did not change from 
the one presented in Fig. 2. 
 

 

Fig. 3 Distribution of missing values for Transformer A and 
Transformer B for the three batches. 

 
 
 

2.3 Spectral clustering 
Spectral clustering is an unsupervised machine learning 
technique that leverages graph theory principles to perform 
dimensionality reduction before clustering. This approach is 
particularly well-suited for phase identification as it can 
capture the inherent non-linear relationships in voltage 
measurements while being robust to noise. 
The algorithm consists of three main steps:  

1. Construct a pairwise similarity matrix, representing the 
relationships between SM voltage time series. We tested 
different methods to compute the similarity between 
each pair of SMs: k-nearest neighbour graph (for 
different values of nearest neighbours), radial basis 
function Gaussian kernel with Euclidean distance (for 
different values of gamma) and Pearson’s correlation 
coefficient (option “precomputed affinity matrix”).  

2. Compute the normalized graph Laplacian from the 
similarity matrix.  

3. Map the data into a nonlinear-dimensional space using 
the eigenvectors of the Laplacian graph corresponding to 
the k-smallest eigenvalues (where k=3 for our three-
phase identification problem).  

4. Finally, different clustering methods are applied in this 
new embedding space to assign phase labels: k-means, 
discretization (“discretize” option) and simple column-
pivoted QR factorization (“cluster_qr” option).  

 
The options described previously are the choices provided by 
Scikit-Learn implementation of spectral clustering.  
Spectral clustering offers several advantages for phase 
identification: 

• It can identify clusters of arbitrary shape, not just 
spherical ones. 

• It reduces the dimensionality of the voltage time series 
data while preserving essential phase relationships.  

• The spectral embedding helps separate the data in a way 
that makes the subsequent clustering more effective.  

• It is less sensitive to noise and outliers compared to 
direct clustering of the voltage measurements.  

 
2.4 Clustering evaluation  
The clustering results are evaluated using unsupervised 
metrics to assess the quality of the phase assignments without 
requiring ground truth labels. The following unsupervised 
metrics were considered:  silhouette score and Dunn’s index. 
These metrics collectively provide a comprehensive 
evaluation of the clustering quality, examining both the 
compactness of phase assignments and the separation between 
different phases. Their complementary nature helps validate 
the robustness of the phase identification results from different 
analytical perspectives. Additionally, as we have knowledge 
about real phases of each SM (ground truth), we also computed 
a supervised clustering evaluation metric:  adjusted rand index 
(ARI), only for the purpose of validating the results for this 
specific dataset for which this information is available. ARI 
can be considered a measure of accuracy in the sense that it 
measures the similarity between the real labels and the 
clustering labels, by comparing pairs of elements and 
quantifying whether these are grouped together or separately. 
Importantly, ARI is invariant to cluster label permutations, 
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which is important in this application scenario as the clustering 
might assign a given cluster as “1” and the same number of 
points is assigned “0” in the real labels [18]. 
 
2.5 Best model selection based on unsupervised metrics 
The best clustering method/parameters are selected through a 
two-stage filtering process that considers both cluster stability 
and quality. The silhouette score and the Dunn’s index are used 
to identify stable and well-defined clustering solutions. 
Models are filtered based on two criteria:  

1. Stability criterion: the absolute difference in silhouette 
and Dunn’s index scores (independently) between 
consecutive parameter configurations should be less 
than 0.05, indicating a stable solution that is not overly 
sensitive to parameter changes. 

2. Quality threshold: stable values of the unsupervised 
scores were obtained for values of nearest neighbours 
higher than 13 in spectral clustering based on k-nearest 
neighbour graph. 

 
If no solutions meet both criteria, all models are considered in 
the next stage. Among the filtered models (or all models if no 
solutions meet the initial criteria), the final selection 
corresponds to the maximum of Dunn’s index and silhouette 
scores. 
 

3 Results  

The phase identification analysis was performed 
independently for each transformer and batch period. Fig. 4 
shows the similarity matrix for transformer A's April dataset 
(batch 0), where clear block diagonal patterns indicate strong 
within-phase correlations, suggesting natural clustering of 
voltage profiles by phase. 
 

 

Fig. 4 Heatmap depicting the binary similarity matrix obtained for 
transformer A, for the April data (batch 0). When a pair of SMs 
voltage time series is considered similar by the k-nearest 
neighbours graph method (for 14 neighbours), the pair is assigned 
1 in the binary metric (yellow) and 0 otherwise (blue). The matrix 
was sorted by each SM real phase for visualisation purposes. 

Fig. 5 presents the clustering performance of the best models 
selected, using the method described in section 2.5, for the 
different batches and transformers. By looking at the results, it 
is possible to conclude that both transformers show high phase 
identification accuracy for transformers A and B and most of 
the batches, using spectral clustering based on k-nearest 
neighbour graph. Different clustering methods (k-means, 
discretize, cluster_qr) performed optimally for different 
batches, suggesting that a flexible approach to method 
selection is beneficial. Batch 2 shows particularly low 
performance for transformer B (ARI = 0.45), indicating that 
temporal variations in voltage time series were not specific 
enough to allow distinguish phases. In fact, visual inspection 
of the SMs time series reveals two SMs profiles that diverge 
from the mean SM profile. 
The results demonstrate that batch transformer-specific 
analysis is beneficial, as the unsupervised metrics performance 
differs among the six datasets, supporting our approach of 
independent transformer/batch analysis. 
 
 

 

Fig. 5 Performance metrics of the best models across the different 
transformers and batches. 

4 Conclusion 

This study presents a robust methodology for phase grid 
mapping in LV networks using SM voltage measurements. 
The proposed spectral clustering approach achieves high 
performance in phase identification, with accuracy exceeding 
0.9 in optimal conditions. The method underperforms for a 
given period and transformer, highlighting the importance of 
batch processing and transformer-specific analysis in 
identifying problems in the grid. The unsupervised evaluation 
framework successfully identifies optimal clustering 
parameters without requiring ground truth phase information, 
making it applicable to realistic scenarios where phase 
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information is often unknown. Future work entails validating 
that cluster (phase) membership of SMs does not change over 
defined periods, investigating the causes of performance 
variations in different batches, and extending the methodology 
to handle dynamic network reconfigurations. Additionally, 
exploring the impact of different voltage measurement 
sampling rates and longer time periods could provide insights 
into optimal data collection strategies for phase identification. 
The method's success in identifying phases using only voltage 
measurements makes it a valuable tool for DSOs seeking to 
improve their network topology information, particularly in 
areas where traditional phase identification methods are 
impractical or costly. 
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